This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060421 Numbers n such that the first n digits of the decimal expansion of Pi form a prime. 12

%I

%S 1,2,6,38,16208,47577,78073,613373

%N Numbers n such that the first n digits of the decimal expansion of Pi form a prime.

%C The Brown link states that in 2001 Ed T. Prothro reported discovering that 16208 gives a probable prime and that Prothro verified that all values for 500 through 16207 digits of Pi are composites. - _Rick L. Shepherd_, Sep 10 2002

%C The corresponding primes are in A005042. - _Alexander R. Povolotsky_, Dec 17 2007

%H K. S. Brown, <a href="http://www.sixfingeredman.net/ref/mathpages-notes/kmath184/kmath184.htm">Primes in the Decimal Expansion of Pi</a> [Broken link?]

%H K. S. Brown, <a href="/A060421/a060421.htm">Primes in the Decimal Expansion of Pi</a> [Cached copy]

%H Prime Curios, <a href="http://primes.utm.edu/curios/page.php?short=314159">314159</a>

%H Prime Curios, <a href="http://primes.utm.edu/curios/page.php?number_id=1435">31415...36307 (16208-digits)</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConstantPrimes.html">Constant Primes</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PiDigits.html">Pi Digits</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Pi-Prime.html">Pi-Prime</a>

%e 3 is prime, so a(1) = 1; 31 is prime, so a(2) = 2; 314159 is prime, so a(3) = 6; ...

%t Do[If[PrimeQ[FromDigits[RealDigits[N[Pi, n + 10], 10, n][[1]]]], Print[n]], {n, 1, 9016} ]

%Y Cf. A005042, A007523, A047658.

%Y Primes in other constants: A064118 (e), A065815 (gamma), A064119 (phi), A118328 (Catalan's constant), A115377 (sqrt(2)), A119344 (sqrt(3)), A228226 (log 2), A228240 (log 10), A119334 (zeta(3)), A122422 (Soldner's constant), A118420 (Glaisher-Kinkelin constant), A174974 (Golomb-Dickman constant), A118327 (Khinchin's constant).

%K hard,nonn,base

%O 1,2

%A _Michel ten Voorde_, Apr 05 2001

%E a(6) = 47577 from _Eric W. Weisstein_, Apr 01 2006

%E a(7) = 78073 from _Eric W. Weisstein_, Jul 13 2006

%E a(8) = 613373 from _Adrian Bondrescu_, May 29 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 04:40 EDT 2019. Contains 325189 sequences. (Running on oeis4.)