

A060412


In the `3x+1' problem, these values for the starting value set new records for the "dropping time", number of steps to reach a lower value than the start.


16



2, 3, 7, 27, 703, 10087, 35655, 270271, 362343, 381727, 626331, 1027431, 1126015, 8088063, 13421671, 20638335, 26716671, 56924955, 63728127, 217740015, 1200991791, 1827397567, 2788008987, 12235060455
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The (3x+1)/2 steps and the halving steps are counted.  Don Reble djr(AT)nk.ca, May 13 2006
Where records occur in A102419 (could be prefixed by an initial 1).  From N. J. A. Sloane, Oct 20 2012


LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..35 (from the web page of Tomás Oliveira e Silva)
Tomás Oliveira e Silva, Tables
Eric Roosendaal, On the 3x + 1 problem
N. J. A. Sloane, First 36 terms of A217934 and A060412 [From Roosendaal web site]
Index entries for sequences related to 3x+1 (or Collatz) problem


EXAMPLE

See A102419.


MATHEMATICA

dcoll[n_]:=Length[NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>=n&]]; t={max=2}; Do[If[(y=dcoll[n])>max, max=y; AppendTo[t, n]], {n, 3, 1130000, 4}]; t (* Jayanta Basu, May 28 2013 *)


CROSSREFS

A060413 gives associated "dropping times", A060414 the maximal values and A060415 the steps at which the maxima occur. See also A217934.
Cf. A060445, A008884, A161021, A161022, A161023, A014682, A126241.
Sequence in context: A052877 A137075 A270347 * A276665 A062573 A019435
Adjacent sequences: A060409 A060410 A060411 * A060413 A060414 A060415


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Apr 06 2001; bfile added Nov 27 2007


STATUS

approved



