OFFSET
3,1
COMMENTS
For n > 12, Fibonacci(n) is divisible by a primitive prime factor (one not dividing Fibonacci(1), ..., Fibonacci(n-1)). But all primes up to n-2 divide smaller Fibonacci numbers, see A001602, so a(n) >= n-1 for n > 12. This strengthens a more general theorem of Bravo and Luca. - Charles R Greathouse IV, Feb 01 2013
LINKS
Tyler Busby, Table of n, a(n) for n = 3..1422 (terms 3..1000 from Charles R Greathouse IV, terms 1001..1408 from Amiram Eldar)
U. Alfred, On the form of primitive factors of Fibonacci numbers, Fibonacci Quarterly 1:1 (1963), pp. 43-45.
Jhon J. Bravo and Florian Luca, On the largest prime factor of the k-Fibonacci numbers, arXiv:1210.4101 [math.NT], 2012.
D. E. Daykin and L. A. G. Dresel, Factorization of Fibonacci numbers, Fibonacci Quarterly 8:1 (1970), pp. 23-30.
FORMULA
a(n) >= n - 1 for n > 12, see comments. It is not hard to show that a(n) > 1000 for n > 88. Similarly a(n) > 20641 for n > 120. - Charles R Greathouse IV, Feb 01 2013
EXAMPLE
F(82) = 2789 * 59369 * 370248451, so a(82) = 370248451.
MATHEMATICA
Table[First[Last[FactorInteger[Fibonacci[n]]]], {n, 3, 100}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
PROG
(PARI) a(n)=my(f=factor(fibonacci(n))[, 1]); f[#f] \\ Charles R Greathouse IV, Feb 01 2013
(Magma) [Maximum(PrimeDivisors(Fibonacci(n))): n in [3..50]]; // Vincenzo Librandi, Dec 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 03 2001
STATUS
approved