

A060382


In base n, a(n) is the smallest number m that leads to a palindromefree sequence, using the following process: start with m; reverse the digits and add it to m, repeat. Stop if you reach a palindrome.


2



22, 100, 255, 708, 1079, 2656, 1021, 593, 196, 1011, 237, 2196, 361, 447, 413, 3297, 519, 341, 379, 711, 461, 505, 551, 1022, 649, 701, 755, 811, 869, 929, 991, 1055, 1799, 1922, 1259, 1331, 1405, 1481, 1559, 1639, 1595, 1762, 1891, 1934, 2069, 2161
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

Only a(2) and a(4) are proved, all the others are conjectured.  Eric Chen, Apr 20 2015
Brown's link reports a(3) as 103 instead of 100. What is the correct value? Dmitry Kamenetsky, Mar 06 2017


LINKS

Karl Hovekamp, Jan 03 2007, Table of n, a(n) for n = 2..3428
K. S. Brown, Digit Reversal Sums Leading to Palindromes


EXAMPLE

a(2) = 22 since A062129(k) > 1 (equivalently, A062131(k) > 1) for k < 22.


CROSSREFS

For the first palindrome in nonpalindromefree sequences, cf. A062129/A062131 (base 2), A033865 (base 10), A253241 (base 12).
Sequence in context: A026909 A262914 A262329 * A264852 A044273 A044654
Adjacent sequences: A060379 A060380 A060381 * A060383 A060384 A060385


KEYWORD

nonn,base,changed


AUTHOR

Michel ten Voorde Apr 03 2001


EXTENSIONS

More terms from Karl Hovekamp, Jan 03 2007


STATUS

approved



