login
A060376
If 10^n can be written as x*y where the digits of x and y are all nonzero, then let a(n) = smallest such x, otherwise a(n) = -1.
1
1, 2, 4, 8, 16, 32, 64, 128, -1, 512, -1, -1, -1, -1, -1, -1, -1, -1, 262144, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 8589934592, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
OFFSET
0,2
COMMENTS
According to Ogilvy and Anderson, 10^33 is the highest known power of ten that can be expressed as the product of two zero-free factors. "If there is another one, it is greater than 10^5000." p. 89
REFERENCES
C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, p. 89.
Rudolph Ondrejka, Nonzero factors of 10^n, Recreational Mathematics Magazine, no. 6 (1961), p. 59.
EXAMPLE
10^2 = 4 * 25, so a(2) = 4.
CROSSREFS
Cf. A060391 (for values of y).
Sequence in context: A251761 A133024 A243085 * A047869 A270201 A016025
KEYWORD
sign,base
AUTHOR
Jason Earls, Apr 02 2001
STATUS
approved