login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060338 Triangle T(n,k) of coefficients of Meixner polynomials of degree n, k=0..n. 7
1, 1, 0, 1, 0, 1, 1, 0, 5, 0, 1, 0, 14, 0, 9, 1, 0, 30, 0, 89, 0, 1, 0, 55, 0, 439, 0, 225, 1, 0, 91, 0, 1519, 0, 3429, 0, 1, 0, 140, 0, 4214, 0, 24940, 0, 11025, 1, 0, 204, 0, 10038, 0, 122156, 0, 230481, 0, 1, 0, 285, 0, 21378, 0, 463490, 0, 2250621, 0, 893025 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

The Meixner polynomials M_n(x) satisfy the recurrence: M_(k+1)=x*M_k-k^2*M_(k-1), M_(-1)=0, M_0=1.

See A060524 for an application to combinatorics. - N. J. A. Sloane, May 30 2013

The Meixner polynomials M_n(x) satisfy: M_n(x)=n!*sum(m=0..n/2, binomial(2*m,m)*sum(j=m..n/2, (-1)^(j)*x^(n-2*j)*sum(i=0..2*j-2*m, (2^(i-2*m)*stirling1(i+n+(-2)*j,n-2*j)*binomial(n-2*m-1,2*j-2*m-i))/(i+n+(-2)*j)!))). [Vladimir Kruchinin, Sep 25 2013]

REFERENCES

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

LINKS

Table of n, a(n) for n=0..65.

A. Hamdi and J. Zeng. Orthogonal polynomials and operator orderings, J. Math. Phys., 51:043506, 2010; arXiv:1006.0808 [math.CO]

R. J. Mathar, Gaussian Quadrature of the Integrals Int_(-infty)^infty F(x) dx /cosh(x)

J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. Lond. Math. Soc. 9 (1934), 6-13.

FORMULA

E.g.f.: exp(x*arctan(y))/sqrt(1+y^2).

EXAMPLE

[1],

[1, 0],

[1, 0, -1],

[1, 0, -5, 0],

[1, 0, -14, 0, 9],

[1, 0, -30, 0, 89, 0],

[1, 0, -55, 0, 439, 0, -225],

[1, 0, -91, 0, 1519, 0, -3429, 0],

[1, 0, -140, 0, 4214, 0, -24940, 0, 11025],

[1, 0, -204, 0, 10038, 0, -122156, 0, 230481, 0], ...

M_1(x)=x, M_2(x)=x^2-1, M_3(x)=x^3-5*x, M_4(x)=x^4-14*x^2+9, M_5(x)=x^5-30*x^3+89*x, M_6(x)=x^6-55*x^4+439*x^2-225,...

MATHEMATICA

m[0] = 1; m[1] = x; m[k_] := m[k] = x*m[k - 1] - (k - 1)^2*m[k - 2]; row[n_] := CoefficientList[m[n], x] // Reverse // Abs; Table[row[n], {n, 0, 10}] // Flatten (* Jean-Fran├žois Alcover, Mar 26 2013 *)

PROG

(Maxima)

M(n, x):=n!*sum(binomial(2*m, m)*sum(((sum((2^(i-2*m)*stirling1(i+n-2*j, n-2*j)*binomial(n-2*m-1, 2*j-2*m-i))/(i+n-2*j)!, i, 0, 2*j-2*m))*(-1)^(j)*x^(n-2*j)), j, m, n/2), m, 0, n/2); [Vladimir Kruchinin, Sep 25 2013]

CROSSREFS

Cf. A028353, A060524, A000330 (third column), A214615 (row sums), A214616 (fifth column).

Triangle without zeros: A094368. Unsigned version: A060524.

Sequence in context: A198105 A339209 A277529 * A132795 A277031 A085198

Adjacent sequences:  A060335 A060336 A060337 * A060339 A060340 A060341

KEYWORD

easy,nonn,tabl

AUTHOR

Vladeta Jovovic, Mar 30 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 05:36 EDT 2021. Contains 343059 sequences. (Running on oeis4.)