

A060261


Denoting 5 consecutive primes by p, q, r, s and t, these are the values of q such that q, r and s have 10 as a primitive root, but p and t do not.


3



257, 379, 811, 971, 1097, 1217, 2411, 2539, 2617, 3011, 4051, 5297, 5657, 6211, 6337, 6659, 6857, 8647, 8807, 10457, 10651, 10687, 10937, 11731, 11939, 12451, 12577, 13099, 14011, 14537, 14731, 14887, 15137, 15607, 15737, 16091, 16411
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

A prime p has 10 as a primitive root iff the length of the period of the decimal expansion of 1/p is p1.


LINKS

Table of n, a(n) for n=0..36.


MATHEMATICA

test[p_] := MultiplicativeOrder[10, p]===p1; Prime/@Select[Range[2, 2500], test[Prime[ # ]]&&test[Prime[ #+1]]&&test[Prime[ #+2]]&&!test[Prime[ #1]]&&!test[Prime[ #+3]]&]


CROSSREFS

The indices of these primes are in A060260. Cf. A001913, A002371, A060259, A060262.
Sequence in context: A256776 A252279 A105345 * A264348 A301619 A158231
Adjacent sequences: A060258 A060259 A060260 * A060262 A060263 A060264


KEYWORD

nonn


AUTHOR

Jeff Burch, Mar 23 2001


EXTENSIONS

Edited by Dean Hickerson, Jun 17 2002


STATUS

approved



