login
Triangle whose rows are the degrees of the irreducible representations of the groups PSL(2,q) as q runs through the primes and prime powers.
4

%I #14 Feb 17 2022 06:17:43

%S 1,1,2,1,1,1,3,1,3,3,4,5,1,3,3,4,5,1,3,3,6,7,8,1,7,7,7,7,8,9,9,9,1,5,

%T 5,8,8,9,10,1,5,5,10,10,11,12,12,1,7,7,12,12,12,13,14,14,1,15,15,15,

%U 15,15,15,15,15,16,17,17,17,17,17,17,17,1,9,9,16,16,16,16,17,18,18,18

%N Triangle whose rows are the degrees of the irreducible representations of the groups PSL(2,q) as q runs through the primes and prime powers.

%D J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford Univ. Press, 1985.

%H J. S. Kimberley, <a href="/A060247/b060247.txt">First 60 rows of A060247 triangle, flattened</a>.

%e Triangle begins:

%e 1, 1, 2;

%e 1, 1, 1, 3;

%e 1, 3, 3, 4, 5;

%e 1, 3, 3, 4, 5;

%e ...

%e (for q = 2,3,4,5, ...).

%o (Magma) CharacterTable(PSL(2,7)); // (say)

%o (Magma) &cat[[Degree(irred): irred in CharacterTable(PSL(2,q))]: q in [2..17]| IsPrimePower(q)]; // _Jason Kimberley_, May 22 2010

%Y q = A000961(n+1).

%Y Row length sequence is A177744.

%Y Consecutive row sequences from 3rd to 18th are: A003860, A003860, A003879, A003880, A003861, A003882, A003883, A003884, A003885, A003886, A003887, A003888, A003889, A003890, A003891, A003892.

%Y Cf. A060246, A060240, A060241.

%K tabf,nonn,nice,easy

%O 1,3

%A _N. J. A. Sloane_, Mar 22 2001

%E Extended by _Jason Kimberley_, May 22 2010