login
Positions of permutations of A060117 in reversed colexicographic ordering A055089.
14

%I #25 Sep 09 2017 19:44:44

%S 0,1,2,3,5,4,6,7,8,9,11,10,14,15,12,13,16,17,21,20,23,22,19,18,24,25,

%T 26,27,29,28,30,31,32,33,35,34,38,39,36,37,40,41,45,44,47,46,43,42,54,

%U 55,56,57,59,58,48,49,50,51,53,52,60,61,62,63,65,64,67,66,70,71,69,68

%N Positions of permutations of A060117 in reversed colexicographic ordering A055089.

%C Together with the inverse A060126 this can be used to conjugate between "multiplication tables" of A261096 & A261216 (and for example, their main diagonals A261099 & A261219, or between involutions A056019 & A060125, see the Formula section) that have been computed for these two common alternative orderings of permutations. - _Antti Karttunen_, Sep 28 2016

%H Antti Karttunen, <a href="/A060119/b060119.txt">Table of n, a(n) for n = 0..5040</a>

%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F As a composition of other permutations:

%F a(n) = A056019(A060120(n)).

%F Other identities, for all n >= 0:

%F a(A060125(A060126(n))) = A056019(n).

%p # The procedure PermUnrank3R is given in A060117, and PermRevLexRank in A056019:

%p A060119(n) = PermRevLexRank(PermUnrank3R(n));

%Y Inverse: A060126.

%Y Cf. A060132 (fixed points).

%Y Cf. A055089, A060117.

%Y Cf. also A056019, A060120, A060125, A261096, A261099, A261216, A261219.

%K nonn,base

%O 0,3

%A _Antti Karttunen_, Mar 02 2001

%E Edited by _Antti Karttunen_, Sep 27 2016