This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060117 A list of all finite permutations in "PermUnrank3R" ordering. (Inverses of the permutations of A060118.) 53
 1, 2, 1, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 3, 1, 1, 2, 4, 3, 2, 1, 4, 3, 1, 4, 2, 3, 4, 1, 2, 3, 4, 2, 1, 3, 2, 4, 1, 3, 1, 4, 3, 2, 4, 1, 3, 2, 1, 3, 4, 2, 3, 1, 4, 2, 3, 4, 1, 2, 4, 3, 1, 2, 4, 2, 3, 1, 2, 4, 3, 1, 4, 3, 2, 1, 3, 4, 2, 1, 3, 2, 4, 1, 2, 3, 4, 1, 1, 2, 3, 5, 4, 2, 1, 3, 5, 4, 1, 3, 2, 5, 4, 3, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS PermUnrank3R and PermUnrank3L are slight modifications of unrank2 algorithm presented in Myrvold-Ruskey article. REFERENCES W. Myrvold and F. Ruskey, Ranking and Unranking Permutations in Linear Time, Inform. Process. Lett. 79 (2001), no. 6, 281-284. LINKS FORMULA [seq(op(PermUnrank3R(j)), j=0..)]; (Maple code given below) EXAMPLE In this table each row consists of A001563[n] permutations of (n+1) terms; i.e., we have (1/) 2,1/ 1,3,2; 3,1,2; 3,2,1; 2,3,1/ 1,2,4,3; 2,1,4,3; Append to each an infinite number of fixed terms and we get a list of rearrangements of natural numbers, but with only a finite number of terms permuted: 1/2,3,4,5,6,7,8,9,... 2,1/3,4,5,6,7,8,9,... 1,3,2/4,5,6,7,8,9,... 3,1,2/4,5,6,7,8,9,... 3,2,1/4,5,6,7,8,9,... 2,3,1/4,5,6,7,8,9,... 1,2,4,3/5,6,7,8,9,... 2,1,4,3/5,6,7,8,9,... MAPLE with(group); permul := (a, b) -> mulperms(b, a); PermUnrank3R := proc(r) local n; n := nops(factorial_base(r)); convert(PermUnrank3Raux(n+1, r, []), 'permlist', 1+(((r+2) mod (r+1))*n)); end; PermUnrank3Raux := proc(n, r, p) local s; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Raux(n-1, r-(s*((n-1)!)), permul(p, [[n, n-s]]))); fi; end; CROSSREFS A060119 = Positions of these permutations in the "canonical list" A055089 (where also the rest of procedures can be found). A060118 gives position of the inverse permutation of each and A065183 positions after Foata transform. Inversion vectors: A064039. Cf. A060125, A060128-A060131, A060132, A060495. Sequence in context: A117506 A179205 A055089 * A196526 A234504 A112592 Adjacent sequences:  A060114 A060115 A060116 * A060118 A060119 A060120 KEYWORD nonn AUTHOR Antti Karttunen, Mar 02 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.