%I
%S 1109111,110091011,111091111,10109901101,10110911101,11000910011,
%T 11010911011,11100910111,1010099010101,1010109110101,1011099011101,
%U 1100009100011,1101009101011,1110009100111,100109990011001
%N Numbers n such that n^2 is a palindromic square with an asymmetric root.
%C With 'asymmetric' is meant almost palindromic with a 'core' (pseudopalindromic). The core '09' when transformed into '1n' (n=1) makes the base number palindromic. E.g. 1109111 is in fact 11_09_111 > 11_(101)_111 > 11_1n_111 > 111n111 and palindromic. Similarly core 099 becomes 10n, core 0999 becomes 100n, etc.
%D M. Keith, "Classification and Enumeration of Palindromic Squares," Journal of Recreational Mathematics, 22:2, pp. 124132, 1990.
%H P. De Geest, <a href="http://www.worldofnumbers.com/subsquar.htm">Subsets of Palindromic Squares</a>
%Y Cf. A060088, A007573, A059744, A059745.
%K nonn,base
%O 1,1
%A _Patrick De Geest_, Feb 15 2001.
