login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060084 a(n) is the least prime not a primitive root of n-th prime. 2
2, 3, 5, 2, 3, 3, 2, 5, 2, 5, 2, 3, 2, 2, 2, 7, 3, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 5, 5, 2, 2, 5, 2, 13, 3, 3, 2, 2, 7, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 17, 2, 2, 2, 7, 2, 2, 3, 3, 2, 2, 2, 3, 5, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 2, 3, 2, 2, 5, 2, 3, 3, 3, 7, 3, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

EXAMPLE

a(8) = 5 because 19 is the 8th prime, primes 2 and 3 are primitive roots of 19, but 5 is not.

MAPLE

with(numtheory); for n from 1 to 100 do i := 1; while (i < n) and (primroot(ithprime(i) - 1, ithprime(n)) = ithprime(i)) do i := i+1; od; print( ithprime(i)); od:

MATHEMATICA

Flatten[Table[Take[Complement[Prime[Range[25]], PrimitiveRoot[Prime[n]]], 1], {n, 100}]] (* Alonso del Arte, Oct 23 2012 *)

PROG

(PARI) a(n)=my(q=prime(n)); forprime(p=2, q-1, if(znorder(Mod(p, q))<q-1, return(p))); q \\ Charles R Greathouse IV, Oct 26 2012

CROSSREFS

Cf. A000040, A060085.

Sequence in context: A317358 A133907 A232931 * A265668 A273087 A236434

Adjacent sequences:  A060081 A060082 A060083 * A060085 A060086 A060087

KEYWORD

easy,nonn

AUTHOR

Marc LeBrun, Feb 23 2001

EXTENSIONS

Corrected by Jud McCranie, Mar 14 2001. Checked by N. J. A. Sloane Sep 03 2002.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 16:26 EDT 2019. Contains 324234 sequences. (Running on oeis4.)