This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060082 Coefficients of even-indexed Euler polynomials (falling powers without zeros). 4
 1, 1, -1, 1, -2, 1, 1, -3, 5, -3, 1, -4, 14, -28, 17, 1, -5, 30, -126, 255, -155, 1, -6, 55, -396, 1683, -3410, 2073, 1, -7, 91, -1001, 7293, -31031, 62881, -38227, 1, -8, 140, -2184, 24310, -177320, 754572, -1529080, 929569, 1, -9, 204, -4284, 67626, -753610, 5497596, -23394924, 47408019 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS E(2n,x) = x^(2n) + Sum_{k=1..n} a(n,k)*x^(2n-2k+1). REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. FORMULA E(n, x) = 2/(n+1) * [B(n+1, x) - 2^(n+1)*B(n+1, x/2) ], with B(n, x) the Bernoulli polynomials. EXAMPLE E(0,x) = 1. E(2,x) = x^2 - x. E(4,x) = x^4 - 2*x^3 + x. E(6,x) = x^6 - 3*x^5 + 5*x^3 - 3*x. E(8,x) = x^8 - 4*x^7 + 14*x^5 - 28*x^3 + 17*x. E(10,x) = x^10 - 5*x^9 + 30*x^7 - 126*x^5 + 255*x^3 - 155*x. MATHEMATICA Table[ CoefficientList[ EulerE[2*n, x], x] // Reverse // DeleteCases[#, 0]&, {n, 0, 9}] // Flatten (* Jean-François Alcover, Jun 21 2013 *) PROG (PARI) {B(n, v='x)=sum(i=0, n, binomial(n, i)*bernfrac(i)*v^(n-i))} E(n, v='x)=2/(n+1)*(B(n+1, v)-2^(n+1)*B(n+1, v/2)) \\ Ralf Stephan, Nov 05 2004 CROSSREFS E(2n, 1/2)*(-4)^n = A000364(n) (signless Euler numbers without zeros). -E(2n, -1/2)*(-4)^n/3 = A076552(n), -E(2n, 1/3)*(-9)^n/2 = A002114(n). Cf. A060083 (rising powers), A060096-7 (Euler polynomials), A004172 (with zeros). Columns (left edge) include A000330, A053132. Columns (right edge) include A001469. Sequence in context: A007754 A144866 A058732 * A102225 A183262 A287030 Adjacent sequences:  A060079 A060080 A060081 * A060083 A060084 A060085 KEYWORD sign,easy,tabl AUTHOR Wolfdieter Lang, Mar 29 2001 EXTENSIONS Edited by Ralf Stephan, Nov 05 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 09:28 EDT 2019. Contains 328345 sequences. (Running on oeis4.)