login
Maximal size of a subset of any Abelian group of order n that does not contain 0 and fails to span the group nontrivially.
1

%I #10 Oct 22 2022 22:43:31

%S 1,1,2,2,3,3,4,4,4,5,5,5,6,6,7,6,8,7,9,7,10,8,11,8,12,9,13,9,14,9,15,

%T 11,16,10,17,10,18,13,19,11,20,11,21,15,22,12,23

%N Maximal size of a subset of any Abelian group of order n that does not contain 0 and fails to span the group nontrivially.

%D J. R. Griggs (griggs(AT)math.sc.edu), personal communication, Apr 24, 2001.

%H J. R. Griggs, <a href="http://dx.doi.org/10.1016/S0012-365X(00)00203-X">Spanning subset sums for finite Abelian groups</a>, Discrete Math., 229 (2001), 89-99.

%F a(2n) = n - 1 for n >= 10 [from Griggs]. - _Sean A. Irvine_, Oct 22 2022

%F a(p) = floor(2*sqrt(p-2)) - 1 for prime p >= 3 [from Griggs]. - _Sean A. Irvine_, Oct 22 2022

%Y Cf. A060020.

%K nonn,more

%O 2,3

%A _N. J. A. Sloane_, Mar 17 2001

%E a(21)-a(48) from _Sean A. Irvine_, Oct 22 2022