login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059989 Numbers n such that 3*n+1 and 4*n+1 are both squares. 4
0, 56, 10920, 2118480, 410974256, 79726887240, 15466605150360, 3000441672282656, 582070217817684960, 112918621814958599640, 21905630561884150645256, 4249579410383710266580080, 824396499983877907565890320, 159928671417461930357516142056 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..400

Index entries for linear recurrences with constant coefficients, signature (195,-195,1).

FORMULA

a(n) = (A001570(n)^2 - 1)/3.

G.f.: 56*x^2 / (1-195*x+195*x^2-x^3).

From Colin Barker, Mar 03 2016: (Start)

a(n) = 195*a(n-1)-195*a(n-2)+a(n-3) for n>3.

a(n) = (-1)*((97+56*sqrt(3))^(-n)*(-1+(97+56*sqrt(3))^n)*(7+4*sqrt(3)+(-7+4*sqrt(3))*(97+56*sqrt(3))^n))/48.

(End)

EXAMPLE

3*56+1=13^2 and 4*56+1=15^2.

MAPLE

f:= proc(n) local u;

  u:= <<7, 8>|<6, 7>>^n . <1, -1>;

  (u[1]^2-1)/3

end proc:

map(f, [$1..30]); # Robert Israel, Mar 03 2016

MATHEMATICA

CoefficientList[Series[56 x/(1 - 195 x + 195 x^2 - x^3), {x, 0, 13}], x] (* Michael De Vlieger, Mar 03 2016 *)

PROG

(PARI) isok(n) = issquare(3*n+1) && issquare(4*n+1) \\ Michel Marcus, Jun 08 2013

(PARI) concat(0, Vec(56*x^2/((1-x)*(1-194*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 03 2016

CROSSREFS

Cf. A245031.

Sequence in context: A034204 A275921 A091546 * A184125 A213865 A059073

Adjacent sequences:  A059986 A059987 A059988 * A059990 A059991 A059992

KEYWORD

nonn,easy

AUTHOR

David Radcliffe, Mar 07 2001

EXTENSIONS

Offset changed to 1 by Joerg Arndt, Mar 03 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 22:00 EDT 2019. Contains 327283 sequences. (Running on oeis4.)