login
Łukasiewicz words as integers written in factorial base.
5

%I #25 Oct 15 2015 20:26:42

%S 0,1,3,4,9,10,13,14,18,33,34,37,38,42,51,52,55,56,60,73,74,78,96,153,

%T 154,157,158,162,171,172,175,176,180,193,194,198,216,249,250,253,254,

%U 258,267,268,271,272,276,289,290,294,312,363,364,367,368,372,385,386,390,408,481

%N Łukasiewicz words as integers written in factorial base.

%C There are A000108(n-1) (Catalan numbers) Łukasiewicz words of length n.

%H Danny Rorabaugh, <a href="/A059985/b059985.txt">Table of n, a(n) for n = 0..10000</a>

%H OEIS Wiki, <a href="/wiki/Łukasiewicz_words">Łukasiewicz words</a>

%H <a href="/index/Lu#Lukasiewicz">Index entries for sequences related to Łukasiewicz</a>

%e Łukasiewicz words: 0 01 011 002 0111 0021 0102 0012 0003 01111 00211 01021 00121 00031 01102 00202 01012 00112 00022 01003 00103 00013 00004 ...

%e a(16) = f(01012) = 0*0! + 1*1! + 0*2! + 1*3! + 2*4! = 55.

%e a(23713) = f(0000000000x) = 0*0! + ... + 0*9! + x*10! = 36288000, where x is the digit 10. - _Danny Rorabaugh_, Oct 15 2015

%Y Cf. A059984.

%K nonn,base

%O 0,3

%A Claude Lenormand (claude.lenormand(AT)free.fr), Mar 07 2001

%E a(37)-a(60) from _Danny Rorabaugh_, Oct 15 2015