login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059977 a(n) = binomial(n+2, 2)^4. 7
1, 81, 1296, 10000, 50625, 194481, 614656, 1679616, 4100625, 9150625, 18974736, 37015056, 68574961, 121550625, 207360000, 342102016, 547981281, 855036081, 1303210000, 1944810000, 2847396321, 4097152081, 5802782976, 8100000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of 4-dimensional cage assemblies.

See Chap. 61, "Hyperspace Prisons", of C. Pickover's book "Wonders of Numbers" for full explanation of "cage numbers."

REFERENCES

Clifford Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..1000

C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review

Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).

FORMULA

L(n) = ((n^m)(n + 1)^m)/(2^m) where m is the dimension, which in this case is 4.

O.g.f.: -(1+72*x+603*x^2+1168*x^3+603*x^4+72*x^5+x^6)/(-1+x)^9. - R. J. Mathar, Mar 31 2008

a(n) = A000217(n+1)^4. - R. J. Mathar, Dec 13 2011

a(n) = (A000539(n+1) + A000541(n+1))/2. - Philippe Deléham, May 25 2015

EXAMPLE

1 = (1 + 1)/2, 81 = (33 + 129)/2, 1296 = (276 + 2316)/2, 10000 = (1300 + 18700)/2, ... - Philippe Deléham, May 25 2015

MAPLE

with (combinat):seq(mul(stirling2(n+1, n), k=1..4), n=1..24); # Zerinvary Lajos, Dec 16 2007

MATHEMATICA

m = 4; Table[ ( (n^m)(n + 1)^m )/(2^m), {n, 1, 30} ]

PROG

(Sage)[stirling_number2(n+1, n)^4for n in xrange(1, 25)] # Zerinvary Lajos, Mar 14 2009

(PARI) { for (n=0, 1000, write("b059977.txt", n, " ", ((n + 1)*(n + 2)/2)^4); ) } \\ Harry J. Smith, Jun 30 2009

CROSSREFS

Cf. A059827, A059860.

Sequence in context: A224355 A016768 A224014 * A231912 A116205 A237455

Adjacent sequences:  A059974 A059975 A059976 * A059978 A059979 A059980

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Mar 06 2001

EXTENSIONS

Better definition from Zerinvary Lajos, May 23 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 06:41 EDT 2019. Contains 327119 sequences. (Running on oeis4.)