The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059973 Expansion of (x + x^2 - 2*x^3) / ( 1 - 4*x^2 - x^4). 6
 0, 1, 1, 2, 4, 9, 17, 38, 72, 161, 305, 682, 1292, 2889, 5473, 12238, 23184, 51841, 98209, 219602, 416020, 930249, 1762289, 3940598, 7465176, 16692641, 31622993, 70711162, 133957148, 299537289, 567451585, 1268860318, 2403763488, 5374978561 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Based on fact that cube root of (2 +- 1 sqrt(5)) = sixth root of (9 +- 4 sqrt(5)) = ninth root of (38 +- 17 sqrt(5)) = ... = phi or 1/phi, where phi is the golden ratio. Osler gives the first three of the above equalities with phi on page 27, stating they are simplified expressions from Ramanujan, but without hinting that the series continues. Bisections: A001076 and A001077. LINKS T. J. Osler, Cardan polynomials and the reduction of radicals, Math. Mag., 74 (No. 1, 2001), 26-32. Index entries for linear recurrences with constant coefficients, signature (0,4,0,1). FORMULA Recurrence: a(n) = 4*a(n-2) + a(n-4) for n >= 4; a(0)=0, a(1)=a(2)=1, a(3)=2. - Werner Schulte, Oct 03 2015 a(2n) = Sum_{k=0..2n-1} a(k); a(2n+1) = A001076(n-1) + Sum_{k=0..2n} a(k), n>0. - Altug Alkan, Oct 06 2015 EXAMPLE x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 17*x^6 + 38*x^7 + 72*x^8 + 161*x^9 + ... - Michael Somos, Aug 11 2009 MATHEMATICA CoefficientList[ Series[(x + x^2 - 2 x^3)/(1 - 4 x^2 - x^4), {x, 0, 33}], x] LinearRecurrence[{0, 4, 0, 1}, {0, 1, 1, 2}, 50] (* Vincenzo Librandi, Oct 10 2015 *) PROG (PARI) {a(n) = if( n<0, n = -n; polcoeff( (-2*x + x^2 + x^3) / (1 + 4*x^2 - x^4) + x*O(x^n), n), polcoeff( (x + x^2 - 2*x^3) / ( 1 - 4*x^2 - x^4) + x*O(x^n), n))} /* Michael Somos, Aug 11 2009 */ (PARI) a(n) = if (n < 4, fibonacci(n), 4*a(n-2) + a(n-4)); vector(50, n, a(n-1)) \\ Altug Alkan, Oct 04 2015 (MAGMA) I:=[0, 1, 1, 2]; [n le 4 select I[n] else 4*Self(n-2)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Oct 10 2015 CROSSREFS Cf. A000045 (Fibonacci Numbers). A001076(n) = a(2*n), A001077(n) = a(2*n + 1). - Michael Somos, Aug 11 2009 Cf. A179319, A183555, A183556. Sequence in context: A268649 A316983 A136326 * A030035 A123431 A283315 Adjacent sequences:  A059970 A059971 A059972 * A059974 A059975 A059976 KEYWORD easy,nonn AUTHOR H. Peter Aleff (hpaleff(AT)earthlink.net), Mar 05 2001 EXTENSIONS Edited by Randall L. Rathbun, Jan 11 2002 More terms from Sascha Kurz, Jan 31 2003 I made the old definition into a comment and gave the g.f. as an explicit definition. - N. J. A. Sloane, Jan 05 2011 Moved g.f. from Michael Somos, into name to match terms. - Paul D. Hanna, Jan 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 17:41 EDT 2020. Contains 335479 sequences. (Running on oeis4.)