login
Partitions encoded by prime factorization. The partition [P1+P2+P3+...] with P1>=P2>=P3>=... is encoded as 2^P1 * 3^P2 * 5^P3 *...
11

%I #7 Oct 18 2022 09:52:26

%S 1,2,4,6,8,12,30,16,24,36,60,210,32,48,72,120,180,420,2310,64,96,144,

%T 216,240,360,900,840,1260,4620,30030,128,192,288,432,480,720,1080,

%U 1800,1680,2520,6300,9240,13860,60060,510510,256,384,576,864,1296,960,1440

%N Partitions encoded by prime factorization. The partition [P1+P2+P3+...] with P1>=P2>=P3>=... is encoded as 2^P1 * 3^P2 * 5^P3 *...

%C Partitions are ordered canonically (as described in the OEIS Wiki link): [] [1] [2] [1+1] [3] [2+1] [1+1+1] [4]... Rearrangement of A025487, A036035 etc.

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a059/A059901.java"></a> (github)

%H OEIS Wiki, <a href="/wiki/Partitions#Orderings_of_partitions">Orderings of partitions</a>

%F a(n) = A059900(A059902(n)).

%e Partition for n=17 is [2+2+1], so a(17)=2^2*3^2*5=180.

%Y Cf. A059902, A059900, A025487, A036035, A000041.

%K easy,nonn

%O 0,2

%A _Marc LeBrun_, Feb 07 2001

%E Terms reordered by _Sean A. Irvine_, Oct 17 2022