

A059872


Solutions to the equation given in A059871, encoded as binary vectors and converted to decimal.


3



1, 3, 5, 13, 21, 46, 51, 52, 78, 83, 84, 175, 181, 205, 210, 303, 309, 333, 338, 390, 392, 639, 698, 726, 728, 737, 822, 824, 846, 851, 852, 903, 905, 1143, 1145, 1197, 1202, 1226, 1232, 1311, 1322, 1328, 1350, 1352, 1409, 1562, 1571, 1572, 1601, 2539, 2540
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The rows of this table have lengths given by A059871[n]: 1;3;5;13;21;46,51,52;78,83,84;175,181,205,210; etc...
In binary encodings, the least significant bit (bit0) stands for the factor of 1, the next bit (bit1) stands for the factor of 2, bit2 for the factor of 3, bit3 for the factor of 5, etc., each bit being 0 if the corresponding factor is 1 and 1 if it is +1 (or +2 if the bit is the most significant bit of the code of odd length).
E.g. we have 2 = 2*1 > 1 in binary, 3 = 1*2 + 1*1 > 11 in binary, 5 = 2*3  1*2 + 1*1 > 101 in binary, 7 = 1*5 + 1*3  1*2 + 1*1 > 1101 in binary, 11 = 2*7  1*5 + 1*3  1*2 + 1*1 > 10101 in binary. Function bin_prime_sum given in A059876 maps such encodings back to primes.


LINKS

Table of n, a(n) for n=1..51.


MAPLE

map(op, primesums_primes_mult(16)); # primesums_primes_mult given in A059871.


CROSSREFS

Cf. A059873, A059874, A059875.
Sequence in context: A172143 A218790 A168388 * A059873 A239314 A059874
Adjacent sequences: A059869 A059870 A059871 * A059873 A059874 A059875


KEYWORD

nonn,tabf,base


AUTHOR

Antti Karttunen, Feb 05 2001


STATUS

approved



