This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059867 Number of irreducible representations of the symmetric group S_n that have odd degree. 8
 1, 2, 2, 4, 4, 8, 8, 8, 8, 16, 16, 32, 32, 64, 64, 16, 16, 32, 32, 64, 64, 128, 128, 128, 128, 256, 256, 512, 512, 1024, 1024, 32, 32, 64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 4096, 4096 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Ayyer et al. (2016, 2016) obtain this sequence (which they call "odd partitions") as the number of partitions of n such that the dimension of the corresponding irreducible representation of S_n is odd. LINKS Eric M. Schmidt, Table of n, a(n) for n = 1..1000 Arvind Ayyer, Amritanshu Prasad, Steven Spallone, Odd partitions in Young's lattice, arXiv:1601.01776 [math.CO], 2016. Arvind Ayyer, A. Prasad, S. Spallone, Representations of symmetric groups with non-trivial determinant, arXiv preprint arXiv:1604.08837 [math.RT], 2016. See Eq. (14). I. G. Macdonald, On the degrees of the irreducible representations of symmetric groups, Bulletin of the London Mathematical Society, 3(2):189-192, 1971. John McKay, Irreducible representations of odd degree, Journal of Algebra 20, 1972 pages 416-418. FORMULA If n = sum 2^e[i] in binary, then the number of odd degree irreducible complex representations of S_n is 2^sum e[i]. In words: write n in binary and take the product of the powers of 2 that appear. G.f.: prod(k>=0, 1 + 2^k * x^2^k). a(n) = 2^A073642(n). - Ralf Stephan, Jun 02 2003 a(1)=1, a(2n) = 2^e1(n)*a(n), a(2n+1) = a(2n), where e1(n) = A000120(n). - Ralf Stephan, Jun 19 2003 EXAMPLE a(3) = 2 because S_3 the degrees of the irreducible representations of S_3 are 1,1,2. MATHEMATICA a[n_] := 2^Total[Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]] - 1]; Array[a, 60] (* Jean-François Alcover, Jul 21 2018 *) PROG (Sage) def A059867(n) : dig = n.digits(2); return prod(2^n for n in xrange(len(dig)) if dig[n]==1) # Eric M. Schmidt, Apr 27 2013 (PARI) A059867(n)={my(d=binary(n)); prod(k=1, #d, if(d[#d+1-k], 2^(k-1), 1)); } \\ Joerg Arndt, Apr 29 2013 (PARI) a(n) = {my(b = Vecrev(binary(n))); 2^sum(k=1, #b, (k-1)*b[k]); } \\ Michel Marcus, Jan 11 2016 CROSSREFS Cf. A000120, A029930, A029931 (the bisection), A073642, A089248. Sequence in context: A120541 A190172 A287293 * A046971 A051754 A108747 Adjacent sequences:  A059864 A059865 A059866 * A059868 A059869 A059870 KEYWORD nonn,easy AUTHOR Noam Katz (noamkj(AT)hotmail.com), Feb 28 2001 EXTENSIONS More terms from Larry Reeves (larryr(AT)acm.org), Mar 27 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 10:38 EST 2018. Contains 318047 sequences. (Running on oeis4.)