%I
%S 0,1,8,35,119,321,784,1672,3389,6280,11285,18971,31383,49162,76322,
%T 113494,167785,239086,340355,468636,646058,865724,1161936,1520105,
%U 1997015,2559758,3297599,4157592,5266644,6537922,8168293,10003615
%N Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>=1} (1)^(t+1) *x^(t*(t+1)/2) / ( (1x^t)^7 *product_{i=1..t} (1x^i) ).
%H G. E. Andrews, <a href="http://www.mat.univie.ac.at/~slc/s/s42andrews.html">Some debts I owe</a> Seminaire Lotharingien Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).
%p Mk := proc(k) 1*add( (1)^n*q^(n*(n+1)/2)/(1q^n)^k/mul(1q^i,i=1..n), n=1..101): end; # with k=7
%Y Cf. A000005 (k=1), A059819 (k=2), A059820 (k=3), ..., A059825 (k=8).
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Feb 24 2001
