login
Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^4 *product_{i=1..t} (1-x^i) ).
1

%I #12 Jun 29 2020 09:52:12

%S 0,1,5,14,34,64,121,190,311,446,666,887,1266,1599,2169,2679,3504,4178,

%T 5383,6253,7858,9060,11114,12560,15390,17076,20512,22788,26993,29494,

%U 34988,37750,44213,47857,55281,59196,68810,72754,83518,88947

%N Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^4 *product_{i=1..t} (1-x^i) ).

%H G. E. Andrews, <a href="http://www.mat.univie.ac.at/~slc/s/s42andrews.html">Some debts I owe</a>, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).

%p Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=4

%Y Cf. A000005 (k=1), A059819 (k=2), A059820 (k=3), ..., A059825 (k=8).

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Feb 24 2001