login
A059782
Triangle T(n,k) giving exponent of power of 3 dividing entry (n,k) of trinomial triangle A027907.
0
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 1, 1, 0, 2, 2, 1, 2, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 1, 2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 1, 2, 2, 0, 0, 0, 0, 1, 1
OFFSET
0,30
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 118.
EXAMPLE
0; 0,0,0; 0,0,1,0,0; 0,1,1,0,1,1,0; ...
MAPLE
with(numtheory): T := proc(i, j) option remember: if i >= 0 and j=0 then RETURN(1) fi: if i >= 0 and j=2*i then RETURN(1) fi: if i >= 1 and j=1 then RETURN(i) fi: if i >= 1 and j=2*i-1 then RETURN(i) fi: T(i-1, j-2)+T(i-1, j-1)+T(i-1, j): end: for i from 0 to 20 do for j from 0 to 2*i do if T(i, j) mod 3 <> 0 then printf(`%d, `, 0) fi: if T(i, j) mod 3 = 0 and T(i, j) mod 2 = 0 then printf(`%d, `, ifactors(T(i, j))[2, 2, 2] ) fi: if T(i, j) mod 3 = 0 and T(i, j) mod 2 = 1 then printf(`%d, `, ifactors(T(i, j))[2, 1, 2] ) fi: #printf(`%d, `, T(i, j)) od:od: # James A. Sellers, Feb 22 2001
CROSSREFS
Sequence in context: A373429 A158566 A128410 * A093654 A342627 A220115
KEYWORD
nonn,easy,tabf
AUTHOR
N. J. A. Sloane, Feb 22 2001
EXTENSIONS
More terms from James A. Sellers, Feb 22 2001
STATUS
approved