login
A059781
Triangle T(n,k) giving exponent of power of 2 dividing entry (n,k) of trinomial triangle A027907.
0
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 4, 0, 4, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 2, 4, 1, 3, 4, 3, 0, 3, 4, 3, 1, 4, 2, 3, 0, 0, 0, 0, 2, 1, 1, 1, 8, 0, 0, 0, 8, 1, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 0
OFFSET
0,18
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 117.
EXAMPLE
0; 0,0,0; 0,1,0,1,0; ...
MAPLE
with(numtheory): T := proc(i, j) option remember: if i >= 0 and j=0 then RETURN(1) fi: if i >= 0 and j=2*i then RETURN(1) fi: if i >= 1 and j=1 then RETURN(i) fi: if i >= 1 and j=2*i-1 then RETURN(i) fi: T(i-1, j-2)+T(i-1, j-1)+T(i-1, j): end: for i from 0 to 20 do for j from 0 to 2*i do if T(i, j) mod 2 = 1 then printf(`%d, `, 0) else printf(`%d, `, ifactors(T(i, j))[2, 1, 2] ) fi: od:od: # James A. Sellers, Feb 22 2001
CROSSREFS
Sequence in context: A355625 A286238 A286237 * A233905 A285284 A288183
KEYWORD
nonn,easy,tabf
AUTHOR
N. J. A. Sloane, Feb 22 2001
EXTENSIONS
More terms from James A. Sellers, Feb 22 2001
STATUS
approved