This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059779 A Lucas triangle: T(m,n), m >= n >= 0. 0
 2, 1, 1, 3, 2, 3, 4, 3, 3, 4, 7, 5, 6, 5, 7, 11, 8, 9, 9, 8, 11, 18, 13, 15, 14, 15, 13, 18, 29, 21, 24, 23, 23, 24, 21, 29, 47, 34, 39, 37, 38, 37, 39, 34, 47, 76, 55, 63, 60, 61, 61, 60, 63, 55, 76, 123, 89, 102, 97, 99, 98, 99, 97, 102, 89, 123, 199, 144, 165, 157, 160, 159 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 28. LINKS FORMULA T(m, n) = T(m-1, n) + T(m-2, n); T(0, 0)=2, T(1, 0)=1, T(1, 1)=1, T(2, 1)=2. EXAMPLE 2; 1,1; 3,2,3; 4,3,3,4; ... MAPLE T := proc(m, n) option remember: if m=0 and n=0 then RETURN(2) fi: if m=1 and n=0 then RETURN(1) fi: if m=1 and n=1 then RETURN(1) fi: if m=2 and n=1 then RETURN(2) fi: if m<=n+1 then RETURN(T(m, m-n)) fi: if m

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .