login
A059776
Three-quadrant Ferrers graphs that partition n.
3
1, 2, 5, 11, 24, 48, 95, 178, 328, 585, 1025, 1754, 2958, 4897, 8002, 12889, 20523, 32289, 50296, 77550, 118521, 179553, 269881, 402532, 596178, 876942, 1281777, 1862015, 2689405, 3862891, 5519403, 7846393, 11100970, 15632733, 21917280
OFFSET
0,2
REFERENCES
G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(11/2) * n^(3/2)). - Vaclav Kotesovec, Jul 12 2018
MAPLE
t1 := add( (-1)^(j)*q^(j*(j+1)/2)*(1-q^(j+1))/(1-q), j=0..101); t3 := mul((1-q^n)^3, n=1..101); series(t1/t3, q, 101);
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[(-1)^k*x^(k*(k+1)/2)*(1 - x^(k + 1))/(1 - x), {k, 0, nmax}]/Product[(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 21 2001
STATUS
approved