

A059774


Consider the line segment in R^n from the origin to the point P=(1,2,3,...,n); let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times P.P.


2



1, 3, 9, 21, 40, 75, 120, 189, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

P.P is given by A000330(n). For n >= 10, a(n) = A000330(n1).
Officially these are just conjectures so far.


REFERENCES

N. J. A. Sloane and V. Vaishampayan, in preparation, 2001.


LINKS

Table of n, a(n) for n=2..45.


CROSSREFS

Cf. A000330, A059804, A047896.
Sequence in context: A112039 A007518 A029494 * A064999 A100135 A024173
Adjacent sequences: A059771 A059772 A059773 * A059775 A059776 A059777


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane and Vinay Vaishampayan, Feb 21, 2001


STATUS

approved



