

A059720


Triangle T(n,k), 0<=k<=n, formed from coefficients when formula for nth diagonal of triangle in A059718 is written as a sum of binomial coefficients.


7



1, 0, 1, 0, 2, 1, 0, 5, 6, 2, 0, 15, 29, 20, 5, 0, 55, 148, 158, 80, 16, 0, 239, 818, 1185, 910, 366, 61, 0, 1199, 4964, 9094, 9392, 5696, 1904, 272, 0, 6810, 32989, 73026, 94833, 77011, 38719, 11080, 1385, 0, 43108, 238931, 619904, 970152, 988040, 663904, 285424, 71424, 7936
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

I would very much like to find a formula for this  N. J. A. Sloane.


LINKS

Table of n, a(n) for n=0..54.


EXAMPLE

1; 0,1; 0,2,1; 0,5,6,2; 0,15,29,20,5; ... E.g. the n=3 diagonal in A059718 has the formula b(m) = 0 + 5*m + 6*C(m,2) + 2*C(m,3) and so the third row here is 0, 5, 6, 2.


CROSSREFS

Interesting because it connects a mysterious sequence (A059219, the left edge) with a known sequence (A000111, the right edge). Cf. A059724, A059725, A059726.
Sequence in context: A130191 A054651 A292323 * A140589 A185209 A241218
Adjacent sequences: A059717 A059718 A059719 * A059721 A059722 A059723


KEYWORD

nonn,tabl,nice


AUTHOR

N. J. A. Sloane, Feb 09 2001


STATUS

approved



