login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059682 Triangle T(n,k) giving number of 2 X k polyominoes with n cells (n >= 2, 1<=k<=n-1). 1
1, 0, 1, 0, 1, 3, 0, 0, 2, 3, 0, 0, 1, 6, 5, 0, 0, 0, 2, 11, 5, 0, 0, 0, 1, 10, 19, 7, 0, 0, 0, 0, 3, 22, 28, 7, 0, 0, 0, 0, 1, 15, 52, 40, 9, 0, 0, 0, 0, 0, 3, 45, 90, 53, 9, 0, 0, 0, 0, 0, 1, 21, 119, 158, 69, 11, 0, 0, 0, 0, 0, 0, 4, 73, 257, 238, 86, 11, 0, 0, 0, 0, 0, 0, 1, 28, 237, 505, 360, 106, 13 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,6

LINKS

Table of n, a(n) for n=2..92.

R. C. Read, Contributions to the cell growth problem, Canad. J. Math., 14 (1962), 1-20. See Eq. (8.5) for g.f..

FORMULA

G.f.: ((y^9-y^8)*x^6+y^8*x^5+(y^7-2*y^6+y^5)*x^4+(y^6-y^3)*x^3+(-y^4+y^2)*x^2+(-y^2-y)*x+1)*y^2*x/((y^3*x^2+(y^2+y)*x-1)*(y*x-1)*(y^2*x-1)*(y^6*x^4+(y^4+y^2)*x^2-1)). - Vladeta Jovovic, Apr 02 2002

EXAMPLE

Triangle starts:

1;

0,1;

0,1,3;

0,0,2,3;

...

MATHEMATICA

rows = 13; gf = ((y^9 - y^8)*x^6 + y^8*x^5 + (y^7 - 2*y^6 + y^5)*x^4 + (y^6 - y^3)*x^3 + (-y^4 + y^2)*x^2 + (-y^2 - y)*x + 1)*y^2*x/((y^3*x^2 + (y^2 + y)*x - 1)*(y*x - 1)*(y^2*x - 1)*(y^6*x^4 + (y^4 + y^2)*x^2 - 1));

coes = CoefficientList[#, x]& /@ CoefficientList[gf + O[y]^(rows+2), y];

T[n_, k_] := coes[[n+1, k+1]];

Table[T[n, k], {n, 2, rows+1}, {k, 1, n-1}] // Flatten (* Jean-Fran├žois Alcover, Nov 12 2017, after Vladeta Jovovic *)

CROSSREFS

Main diagonal gives A109613(n-2).

Sequence in context: A120569 A128113 A108930 * A156548 A112883 A117138

Adjacent sequences:  A059679 A059680 A059681 * A059683 A059684 A059685

KEYWORD

nonn,easy,nice,tabl

AUTHOR

N. J. A. Sloane, Feb 05 2001

EXTENSIONS

More terms from Vladeta Jovovic, Apr 02 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 15:03 EST 2018. Contains 299414 sequences. (Running on oeis4.)