login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059652 a(n) = [[(k^2)*n]-(k*[k*n])], where k = sqrt(3/2) and [] is the floor function. 2
0, -1, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The values of (floor((k^2)*j)-(k*(floor(k*j)))) for j=0..45, with k=2^(1/3), are 0, -0.224746, 0.550508, 0.325762, 1.101016, -0.348476, 0.426778, 0.202032, 0.97729, ...

LINKS

Table of n, a(n) for n=0..119.

MAPLE

Digits := 89; floor_diffs_floored(sqrt(3/2), 120);

CROSSREFS

A059648 gives similar sequence for k=sqrt(2). Positions of ones: A059653, positions of minus ones: A059655.

Sequence in context: A168393 A071986 A079944 * A108736 A079813 A078580

Adjacent sequences:  A059649 A059650 A059651 * A059653 A059654 A059655

KEYWORD

sign

AUTHOR

Antti Karttunen, Feb 03 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 18:48 EST 2018. Contains 317276 sequences. (Running on oeis4.)