The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059651 a(n) = [[(k^2)*n]-(k*[k*n])], where k = cube root of 2 and [] is the floor function. 2
 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 1, -1, 0, -1, 0, 0, -1, 0, -1, -1, 0, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, 1, -1, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, -1, -1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The values of (floor((k^2)*j)-(k*(floor(k*j)))) for j=0..50, where k=2^(1/3), are 0, -0.259921, 0.480158, 0.220237, -0.299605, -0.559526, 0.180553, 0.92063, -0.59921, ... LINKS MAPLE Digits := 89; floor_diffs_floored(evalf(2^(1/3)), 120); CROSSREFS A059648 gives similar sequence for k=sqrt(2). Positions of +1's: A059657, positions of -1's A059659. Sequence in context: A108736 A079813 A078580 * A286339 A244735 A245938 Adjacent sequences: A059648 A059649 A059650 * A059652 A059653 A059654 KEYWORD sign AUTHOR Antti Karttunen, Feb 03 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 13:51 EST 2023. Contains 359923 sequences. (Running on oeis4.)