|
|
A059651
|
|
a(n) = [[(k^2)*n]-(k*[k*n])], where k = cube root of 2 and [] is the floor function.
|
|
2
|
|
|
0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 1, -1, 0, -1, 0, 0, -1, 0, -1, -1, 0, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, 1, -1, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, -1, -1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The values of (floor((k^2)*j)-(k*(floor(k*j)))) for j=0..50, where k=2^(1/3), are 0, -0.259921, 0.480158, 0.220237, -0.299605, -0.559526, 0.180553, 0.92063, -0.59921, ...
|
|
LINKS
|
Table of n, a(n) for n=0..119.
|
|
MAPLE
|
Digits := 89; floor_diffs_floored(evalf(2^(1/3)), 120);
|
|
CROSSREFS
|
A059648 gives similar sequence for k=sqrt(2). Positions of +1's: A059657, positions of -1's A059659.
Sequence in context: A108736 A079813 A078580 * A286339 A244735 A245938
Adjacent sequences: A059648 A059649 A059650 * A059652 A059653 A059654
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Antti Karttunen, Feb 03 2001
|
|
STATUS
|
approved
|
|
|
|