login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059651 a(n) = [[(k^2)*n]-(k*[k*n])], where k = cube root of 2 and [] is the floor function. 2
0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 1, -1, 0, -1, 0, 0, -1, 0, -1, -1, 0, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, 1, -1, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, -1, -1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The values of (floor((k^2)*j)-(k*(floor(k*j)))) for j=0..50, where k=2^(1/3), are 0, -0.259921, 0.480158, 0.220237, -0.299605, -0.559526, 0.180553, 0.92063, -0.59921, ...

LINKS

Table of n, a(n) for n=0..119.

MAPLE

Digits := 89; floor_diffs_floored(evalf(2^(1/3)), 120);

CROSSREFS

A059648 gives similar sequence for k=sqrt(2). Positions of +1's: A059657, positions of -1's A059659.

Sequence in context: A108736 A079813 A078580 * A176405 A084091 A080846

Adjacent sequences:  A059648 A059649 A059650 * A059652 A059653 A059654

KEYWORD

sign

AUTHOR

Antti Karttunen, Feb 03 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 11:35 EST 2018. Contains 317238 sequences. (Running on oeis4.)