%I #7 Jul 03 2017 19:42:08
%S 1,27,273,1715,8007,30381,98735,284349,742950,1791426,4037670,8591154,
%T 17392258,33711510,62886162,113381398,198287439,337392405,560004575,
%U 908737245,1444515345,2253115995,3453615945,5209188075,7740767580,11344196916,16411557852
%N Expansion of (1+15*x+15*x^2+x^3)/(1-x)^12.
%C a(n)= A038166(2*n).
%H T. D. Noe, <a href="/A059603/b059603.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1).
%F a(n)= binomial(n+8, 8)*(2*n+9)*(8*n^2+72*n+55)/(11*5*9).
%F G.f.:(1+15*x+15*x^2+x^3)/(1-x)^12.
%t CoefficientList[Series[(1+15x+15x^2+x^3)/(1-x)^12,{x,0,40}],x] (* or *) LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,27,273,1715,8007,30381,98735,284349,742950,1791426,4037670,8591154},40] (* _Harvey P. Dale_, Jul 03 2017 *)
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Feb 02 2001