%I #14 Apr 16 2023 20:45:11
%S 3,19,69,189,434,882,1638,2838,4653,7293,11011,16107,22932,31892,
%T 43452,58140,76551,99351,127281,161161,201894,250470,307970,375570,
%U 454545,546273,652239,774039,913384,1072104,1252152,1455608,1684683,1941723
%N Expansion of (3+x)/(1-x)^6.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F a(n) = binomial(n+4, 4)*(15+4*n)/5.
%F G.f.: (3+x)/(1-x)^6.
%F a(-n-4) = -A034263(n). - _Bruno Berselli_, Aug 23 2011
%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - _Wesley Ivan Hurt_, Apr 16 2023
%t f[n_]:=Binomial[n+4,4]*(15+4*n)/5; Table[f[n],{n,0,5!}] (* _Vladimir Joseph Stephan Orlovsky_, May 30 2010 *)
%Y Cf. A034263.
%K nonn,easy
%O 0,1
%A _Wolfdieter Lang_, Feb 02 2001
%E More terms from _Vladimir Joseph Stephan Orlovsky_, May 30 2010