login
A059598
Tenth column (m=9) of convolution triangle A059594(n,m).
1
1, 10, 65, 320, 1320, 4752, 15400, 45760, 126500, 328680, 809380, 1901120, 4282200, 9289840, 19482200, 39619008, 78337930, 150954980, 284060810, 522920640, 943206264, 1669294000, 2902420600, 4963400000
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (10, -35, 20, 195, -498, -15, 1800, -2205, -2150, 7001, -2260, -9785, 10830, 4845, -15504, 4845, 10830, -9785, -2260, 7001, -2150, -2205,1800, -15, -498, 195, 20, -35, 10, -1).
FORMULA
G.f.: 1/((1-x^2)*(1-x))^10.
a(2*k)= binomial(n+14, 14)*(2*n+15)*(8*n^4+240*n^3+2185*n^2+5775*n+2907)/(19*9*17*15);
a(2*k+1)= binomial(k+15, 15)*2*(8*k^4+256*k^3+2767*k^2+11504*k+14535)/(17*9*19), k >= 0
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x))^10, {x, 0, 30}], x] (* or *) LinearRecurrence[{10, -35, 20, 195, -498, -15, 1800, -2205, -2150, 7001, -2260, -9785, 10830, 4845, -15504, 4845, 10830, -9785, -2260, 7001, -2150, -2205, 1800, -15, -498, 195, 20, -35, 10, -1}, {1, 10, 65, 320, 1320, 4752, 15400, 45760, 126500, 328680, 809380, 1901120, 4282200, 9289840, 19482200, 39619008, 78337930, 150954980, 284060810, 522920640, 943206264, 1669294000, 2902420600, 4963400000, 8356661300, 13865072520, 22688862900, 36646948800, 58465921800, 92190872400}, 30] (* Harvey P. Dale, Oct 20 2021 *)
CROSSREFS
Sequence in context: A058920 A263472 A250287 * A327388 A341387 A133715
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Feb 02 2001
STATUS
approved