OFFSET
0,1
COMMENTS
A hypergraph is a T_0 hypergraph if for every two distinct nodes there exists a hyperedge containing one but not the other node.
FORMULA
a(n)=(1/n!)*Sum_{k=0..n} |stirling1(n, k)|*floor((2^k)!*exp(1)).
EXAMPLE
a(3) = (1/3!) * (2 * [2! * e] + 3 * [4! * e] + [8! * e]) = (1/3!) * (2 * 5 + 3 * 65 + 109601) = 18301, where [k! * e] := floor(k! * exp(1)).
MAPLE
with(combinat): Digits := 1000: f := n->(1/n!)*sum(abs(stirling1(n, i))*floor((2^i)!*exp(1)), i=0..n): for n from 0 to 8 do printf(`%d, `, f(n)) od:
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jan 23 2001
EXTENSIONS
More terms from James A. Sellers, Jan 24 2001
STATUS
approved