login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059530 Triangle T(n,k) of k-block T_0-tricoverings of an n-set. 2
0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 39, 89, 43, 3, 0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12, 0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70, 0, 0, 0, 0, 0, 5040, 536760, 6052730, 20660055, 29432319, 19826737, 6481160, 964495, 52430 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,6

COMMENTS

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering. A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.

REFERENCES

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

LINKS

Table of n, a(n) for n=3..56.

T_0-tricoverings of a 4-set

FORMULA

E.g.f. for k-block T_0-tricoverings of an n-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf}(1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.

EXAMPLE

[0, 0, 0, 0, 1, 3, 1], [0, 0, 0, 0, 1, 39, 89, 43, 3], [0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12], [0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70], ...; there are 5=1+3+1 T_0-tricoverings of a 3-set and 175=1+39+89+43+3 T_0-tricoverings of a 4-set, cf. A060070.

CROSSREFS

Cf. (column sums) A060069, (row sums) A060070, A060051-A060053, A002718, A059443, A003462, A059945-059951.

Sequence in context: A078529 A180017 A243827 * A193525 A049828 A286131

Adjacent sequences:  A059527 A059528 A059529 * A059531 A059532 A059533

KEYWORD

nonn,tabf

AUTHOR

Vladeta Jovovic, Feb 22 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 02:13 EST 2019. Contains 320381 sequences. (Running on oeis4.)