The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059512 For n>=2, the number of (s(0), s(1), ..., s(n-1)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,....,n-1, s(0) = 2, s(n-1) = 2. 4

%I

%S 0,1,1,3,7,18,46,119,309,805,2101,5490,14356,37557,98281,257231,

%T 673323,1762594,4614226,12079707,31624285,82792161,216750601,

%U 567457058,1485616392,3889385353,10182528721,26658183099,69791991919

%N For n>=2, the number of (s(0), s(1), ..., s(n-1)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,....,n-1, s(0) = 2, s(n-1) = 2.

%C Substituting x(1-x)/(1-2x) into x/(1-x^2) yields g.f. of sequence.

%F a(n) = 2a(n-1) + Sum{m<n-1}a(m) - F(n-3) where F(n) is the n-th Fibonacci number (A000045).

%F G.f.: x(1-x)(1-2x)/((1-x-x^2)(1-3x+x^2)).

%F a(n+1)=sum{k=0..floor(n/2), C(n,2k)*F(2k+1)}. [From _Paul Barry_, Oct 14 2009]

%t CoefficientList[Series[x(1-x)(1-2x)/((1-x-x^2)(1-3x+x^2)), {x,0,30}], x] (* _Harvey P. Dale_, Apr 23 2011 *)

%o (PARI) a(n)=(fibonacci(2*n-1)+fibonacci(n-2))/2

%Y Cf. A000667, A059216, A059219, A059502, A027994.

%Y a(1-2n)=A005207(2n), a(-2n)=A056014(2n+1).

%K easy,nonn

%O 0,4

%A _Floor van Lamoen_, Jan 21 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 15:26 EDT 2020. Contains 336248 sequences. (Running on oeis4.)