This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059439 A diagonal of A059438. 5
 0, 0, 1, 2, 7, 32, 177, 1142, 8411, 69692, 642581, 6534978, 72754927, 880877928, 11530686953, 162331760494, 2446380427331, 39300220067668, 670480457586813, 12106985274788506, 230691361507912471, 4625811718758963136 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Self-convolution of A003319. - Vaclav Kotesovec, Aug 03 2015 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 262 (#14). LINKS FORMULA G.f.: (1-1/Sum (k! x^k ))^2. For n>0, a(n) = A259472(n) + 2*A003319(n). - Vaclav Kotesovec, Aug 03 2015 a(n) ~ 2*(n-1)! * (1 - 1/n - 1/n^2 + 1/n^3 + 30/n^4 + 404/n^5 + 5379/n^6 + 76021/n^7 + 1155805/n^8 + 18931873/n^9 + 333434490/n^10), for coefficients see A260913. - Vaclav Kotesovec, Aug 03 2015 EXAMPLE G.f. = x^2 + 2*x^3 + 7*x^4 + 32*x^5 + 177*x^6 + 1142*x^7 + 8411*x^8 + ... MATHEMATICA a[0]=0; a[n_]:=a[n] = n!-Sum[k!*a[n-k], {k, 1, n-1}]; Table[Sum[a[k]*a[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 03 2015 *) CoefficientList[Assuming[Element[x, Reals], Series[(1 - x*E^(1/x) / ExpIntegralEi[1/x])^2, {x, 0, 20}]], x] (* Vaclav Kotesovec, Aug 03 2015 *) CROSSREFS Cf. A003319, A259472, A260503, A260913. Sequence in context: A125223 A277359 A005362 * A190123 A006014 A121555 Adjacent sequences:  A059436 A059437 A059438 * A059440 A059441 A059442 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Feb 01 2001 EXTENSIONS More terms from Vladeta Jovovic, Mar 04 2001 Prepended a(0)=0, a(1)=0 from Vaclav Kotesovec, Aug 03 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 07:15 EDT 2019. Contains 327995 sequences. (Running on oeis4.)