login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059438 Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) is the number of permutations of [1..n] with k components. 18

%I #67 Oct 09 2022 08:06:20

%S 1,1,1,3,2,1,13,7,3,1,71,32,12,4,1,461,177,58,18,5,1,3447,1142,327,92,

%T 25,6,1,29093,8411,2109,531,135,33,7,1,273343,69692,15366,3440,800,

%U 188,42,8,1,2829325,642581,125316,24892,5226,1146,252,52,9,1

%N Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) is the number of permutations of [1..n] with k components.

%H G. C. Greubel, <a href="/A059438/b059438.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%H Louis Comtet, <a href="https://archive.org/details/Comtet_Louis_-_Advanced_Coatorics">Advanced Combinatorics</a>, Reidel, 1974, p. 262 (#14).

%H Antonio Di Crescenzo, Barbara Martinucci, and Abdelaziz Rhandi, <a href="http://arxiv.org/abs/1405.4312">A linear birth-death process on a star graph and its diffusion approximation</a>, arXiv:1405.4312 [math.PR], 2014.

%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000056">The decomposition number of a permutation.</a>

%H Peter Hegarty and Anders Martinsson, <a href="http://arxiv.org/abs/1210.4798">On the existence of accessible paths in various models of fitness landscapes</a>, arXiv:1210.4798 [math.PR], 2012-2014. - From _N. J. A. Sloane_, Jan 01 2013

%H Sergey Kitaev and Philip B. Zhang, <a href="https://arxiv.org/abs/1811.07679">Distributions of mesh patterns of short lengths</a>, arXiv:1811.07679 [math.CO], 2018.

%F Let f(x) = Sum_{n >= 0} n!*x^n, g(x) = 1 - 1/f(x). Then g(x) is g.f. for first diagonal A003319 and Sum_{n >= k} T(n, k)*x^n = g(x)^k.

%F Triangle T(n, k), n > 0 and k > 0, read by rows; given by [0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA A000007 where DELTA is Deléham's operator defined in A084938.

%F T(n+k, k) = Sum_{a_1 + a_2 + ... + a_k = n} A003319(a_1)*A003319(a_2)*...*A003319(a_k). T(n, k) = 0 if n < k, T(n, 1) = A003319(n) and for n >= k T(n, k)= Sum_{j>=1} T(n-j, k-1)* A003319(j). A059438 is formed from the self convolution of its first column (A003319). - _Philippe Deléham_, Feb 04 2004

%F Sum_{k>0} T(n, k) = n!; see A000142. - _Philippe Deléham_, Feb 05 2004

%F If g(x) = x + x^2 + 3*x^3 + 13*x^4 + ... is the generating function for the number of permutations with no global descents, then 1/(1-g(x)) is the generating function for n!. Setting t=1 in f(x, t) implies Sum_{k=1..n} T(n,k) = n!. Let g(x) be the o.g.f. for A003319. Then the o.g.f. for this table is given by f(x, t) = 1/(1 - t*g(x)) - 1 (i.e., the coefficient of x^n*t^k in f(x,t) is T(n,k)). - _Mike Zabrocki_, Jul 29 2004

%e Triangle begins:

%e [1] [ 1]

%e [2] [ 1, 1]

%e [3] [ 3, 2, 1]

%e [4] [ 13, 7, 3, 1]

%e [5] [ 71, 32, 12, 4, 1]

%e [6] [ 461, 177, 58, 18, 5, 1]

%e [7] [ 3447, 1142, 327, 92, 25, 6, 1]

%e [8] [ 29093, 8411, 2109, 531, 135, 33, 7, 1]

%e [9] [273343, 69692, 15366, 3440, 800, 188, 42, 8, 1]

%p # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.

%p PMatrix(10, A003319); # _Peter Luschny_, Oct 09 2022

%t (* p = indecomposable permutations = A003319 *) p[n_] := p[n] = n! - Sum[ k!*p[n-k], {k, 1, n-1}]; t[n_, k_] /; n < k = 0; t[n_, 1] := p[n]; t[n_, k_] /; n >= k := t[n, k] = Sum[ t[n-j, k-1]*p[j], {j, 1, n}]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}] ] (* _Jean-François Alcover_, Mar 06 2012, after _Philippe Deléham_ *)

%o (SageMath)

%o def A059438_triangle(dim) :

%o R = PolynomialRing(ZZ, 'x')

%o C = [R(0)] + [R(1) for i in range(dim+1)]

%o A = [(i + 2) // 2 for i in range(dim+1)]

%o A[0] = R.gen(); T = []

%o for k in range(1, dim+1) :

%o for n in range(k, 0, -1) :

%o C[n] = C[n-1] + C[n+1] * A[n-1]

%o T.append(list(C[1])[1::])

%o return T

%o A059438_triangle(8) # _Peter Luschny_, Sep 10 2022

%o (SageMath) Alternatively, using the function PartTrans from A357078:

%o # Adds a (0,0)-based column (1, 0, 0, ...) to the left of the triangle.

%o dim = 10

%o A = ZZ[['t']]; g = A([0]+[factorial(n) for n in range(1, 30)]).O(dim+2)

%o PartTrans(dim, lambda n: list(g / (1 + g))[n]) # _Peter Luschny_, Sep 11 2022

%Y A version with reflected rows is A263484.

%Y Diagonals give A003319, A059439, A059440, A055998.

%Y Cf. A000007, A085771, A084938.

%Y T(2n,n) gives A308650.

%K nonn,tabl,easy,nice

%O 1,4

%A _N. J. A. Sloane_, Feb 01 2001

%E More terms from _Vladeta Jovovic_, Mar 04 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 18:58 EDT 2024. Contains 371781 sequences. (Running on oeis4.)