login
A059425
Primes of form n^2 + 19n + 17.
2
17, 37, 59, 83, 109, 137, 167, 199, 233, 269, 307, 347, 389, 433, 479, 577, 683, 739, 797, 857, 919, 983, 1049, 1117, 1187, 1259, 1409, 1487, 1567, 1733, 1907, 1997, 2089, 2377, 2477, 2579, 2683, 2789, 2897, 3119, 3467, 3709, 3833, 4217, 4349, 4483
OFFSET
1,1
COMMENTS
0<=n<=14 gives primes.
EXAMPLE
a(3) = 83 = 3^2 + 19*3 + 17 is in the sequence because it is prime. a(15)=527 is not because 527 = 17*31.
MAPLE
with(numtheory): for n from 0 to 300 do if isprime(n^2 + 19*n + 17) then printf(`%d, `, n^2 + 19*n + 17) fi; od:
MATHEMATICA
Select[Table[n^2+19n+17, {n, 0, 60}], PrimeQ] (* Harvey P. Dale, Jun 21 2011 *)
CROSSREFS
Sequence in context: A339531 A363040 A295338 * A341937 A225077 A146328
KEYWORD
nonn
AUTHOR
Anton Joha, Jan 31 2001
EXTENSIONS
More terms from James A. Sellers, Feb 03 2001
STATUS
approved