login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059409 a(n) = 4^n * (2^n - 1). 3
0, 4, 48, 448, 3840, 31744, 258048, 2080768, 16711680, 133955584, 1072693248, 8585740288, 68702699520, 549688705024, 4397778075648, 35183298347008, 281470681743360, 2251782633816064, 18014329790005248, 144114913197948928 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Jordan's totient functions are described more fully in A059379 and A059380; for example, J_1(n) is Euler's totient function and J_2(n) the Moebius transform of squares.

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..100

FORMULA

Equals J_n(8) (see A059379).

J_n(8) = 8^n - A024023(n) - A000225(n) - A000012(n).

EXAMPLE

(4,48,448,3840,...) = (8,64,512,4096,...) - (2,12,56,240,...) - (1,3,7,15,...) - (1,1,1,1,...)

MAPLE

seq(4^n * (2^n - 1), n=0..100); # Muniru A Asiru, Jan 29 2018

MATHEMATICA

Table[4^n*(2^n - 1), {n, 0, 30}] (* G. C. Greubel, Jan 29 2018 *)

PROG

(PARI) { for (n = 0, 100, write("b059409.txt", n, " ", 4^n*(2^n - 1)); ) } \\ Harry J. Smith, Jun 26 2009

(MAGMA) [4^n*(2^n - 1): n in [0..40]]; // Vincenzo Librandi, 26 2011

(GAP) List([0..100], n->4^n * (2^n - 1)); # Muniru A Asiru, Jan 29 2018

CROSSREFS

Cf. A059379, A059380.

Equals 4 * A016152.

Sequence in context: A269180 A228701 A111903 * A297816 A297987 A298842

Adjacent sequences:  A059406 A059407 A059408 * A059410 A059411 A059412

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Alford Arnold, Jan 30 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 04:00 EST 2018. Contains 317225 sequences. (Running on oeis4.)