login
Sums of two nonzero Fibonacci numbers.
8

%I #35 Feb 16 2015 04:11:30

%S 2,3,4,5,6,7,8,9,10,11,13,14,15,16,18,21,22,23,24,26,29,34,35,36,37,

%T 39,42,47,55,56,57,58,60,63,68,76,89,90,91,92,94,97,102,110,123,144,

%U 145,146,147,149,152,157,165,178,199,233,234,235,236,238,241,246,254,267

%N Sums of two nonzero Fibonacci numbers.

%C The sums of two distinct nonzero Fibonacci numbers is essentially the same sequence: 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, ... (only 2 is missing), since F(i) + F(i) = F(i-2) + F(i+1). - _Colm Mulcahy_, Mar 02 2008

%C To elaborate on Mulcahy's comment above: all terms of A078642 are in this sequence; those are numbers with two distinct representations as the sum of two Fibonacci numbers, which are, as Alekseyev proved, numbers of the form 2*F(i) greater than 2. - _Alonso del Arte_, Jul 07 2013

%H T. D. Noe, <a href="/A059389/b059389.txt">Table of n, a(n) for n = 1..1000</a>

%F a(1) = 2 and for n >= 2 a(n) = F_(trinv(n-2)+2) + F_(n-((trinv(n-2)*(trinv(n-2)-1))/2)) where F_n is the n-th Fibonacci number, F_1 = 1 F_2 = 1 F_3 = 2 ... and the definition of trinv(n) is in A002262. - Noam Katz (noamkj(AT)hotmail.com), Feb 04 2001

%F log a(n) ~ sqrt(n log phi) where phi is the golden ratio A001622. There are (log x/log phi)^2 + O(log x) members of this sequence up to x. - _Charles R Greathouse IV_, Jul 24 2012

%e 10 is in the sequence because 10 = 2 + 8.

%e 11 is in the sequence because 11 = 3 + 8.

%e 12 is not in the sequence because no pair of Fibonacci numbers adds up to 12.

%p N:= 1000: # to get all terms <= N

%p R:= NULL:

%p for j from 1 do

%p r:= combinat:-fibonacci(j);

%p if r > N then break fi;

%p R:= R, r;

%p end:

%p R:= {R}:

%p select(`<=`, {seq(seq(r+s, s=R),r=R)},N);

%p # if using Maple 11 or earlier, uncomment the next line

%p # sort(convert(%,list)); # _Robert Israel_, Feb 15 2015

%t max = 13; Select[Union[Total/@Tuples[Fibonacci[Range[2, max]], {2}]], # <= Fibonacci[max] &] (* _Harvey P. Dale_, Mar 13 2011 *)

%o (PARI) list(lim)=my(upper=log(lim*sqrt(5))\log((1+sqrt(5))/2)+1, t, tt, v=List([2])); if(fibonacci(t)>lim,t--); for(i=3,upper, t=fibonacci(i); for(j=2,i-1,tt=t+fibonacci(j); if(tt>lim, break, listput(v,tt)))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 24 2012

%Y Cf. A000045, A059390 (complement). Similar in nature to A048645. Essentially the same as A084176. Intersection with A049997 is A226857.

%K nonn,easy

%O 1,1

%A Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001

%E More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001