login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059387 Jordan function J_n(6) (see A059379). 4
0, 2, 24, 182, 1200, 7502, 45864, 277622, 1672800, 10057502, 60406104, 362617862, 2176246800, 13059091502, 78359364744, 470170602902, 2821066795200, 16926530173502, 101559568985784, 609358577224742, 3656154952230000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = A000225(n) * A024023(n) = (2^n - 1) * (3^n - 1) . a(n) is the number of n-tuples of elements e_1,e_2,...,e_n in the cyclic group C_6 such that the subgroup generated by e_1,e_2,...,e_n is C_6. - Sharon Sela (sharonsela(AT)hotmail.com), Jun 02 2002

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Index entries for linear recurrences with constant coefficients, signature (12,-47,72,-36).

FORMULA

G.f.: -2*x*(6*x^2-1) / ((x-1)*(2*x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Dec 06 2012

a(n-1) = (limit of (Sum_{k>=0} (1/(6*k + 1)^s - 1/(6*k + 2)^s - 2/(6*k + 3)^s - 1/(6*k + 4)^s + 1/(6*k + 5)^s + 2/(6*k + 6)^s) as s -> n))/zeta(n)*6^(n - 1). - Mats Granvik, Nov 14 2013

MAPLE

A059387:=n->(2^n-1)*(3^n-1); seq(A059387(n), n=0..50); # Wesley Ivan Hurt, Nov 14 2013

MATHEMATICA

Table[(2^n-1)*(3^n-1), {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)

PROG

(MAGMA) [(2^n-1)*(3^n-1): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011

(PARI) for(n=0, 30, print1((2^n-1)*(3^n-1), ", ")) \\ G. C. Greubel, Jan 29 2018

CROSSREFS

Cf. A000225, A024023.

Sequence in context: A073066 A002736 A131972 * A126190 A121356 A052780

Adjacent sequences:  A059384 A059385 A059386 * A059388 A059389 A059390

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jan 29 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 21:10 EST 2018. Contains 317116 sequences. (Running on oeis4.)