login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059386 Expansion of e.g.f. cosh(cosh(x)-1) (even powers only). 2
1, 0, 3, 15, 168, 3405, 77253, 2151240, 77493783, 3369709995, 169438618608, 9847267355145, 658888820876553, 49985438650733040, 4245160431876404043, 401030532597501719655, 41924382309752516224728, 4820179120197824593864965 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is the number of partitions of the set {1, 2, ..., 2n} into an even number of blocks, each containing an even number of elements. - Isabel C. Lugo (izzycat(AT)gmail.com), Aug 23 2004

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 9th line of table.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..250

MAPLE

seq(factorial(k)*coeftayl(cosh(cosh(x)-1), x = 0, k), k=0..200, 2); # Muniru A Asiru, Jan 29 2018

MATHEMATICA

nn = 30; Insert[Select[Range[0, nn]! CoefficientList[Series[Cosh[Cosh[x] - 1], {x, 0, nn}], x], # > 0 &], 0, 2] (* Geoffrey Critzer, Mar 31 2012 *)

With[{nn = 50}, CoefficientList[Series[Cosh[Cosh[x] - 1], {x, 0, nn}], x] Range[0, nn]!][[1 ;; ;; 2]] (* G. C. Greubel, Jan 29 2018 *)

PROG

(PARI) x='x+O('x^50); v=Vec(serlaplace(cosh(cosh(x)-1))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jan 29 2018

CROSSREFS

Sequence in context: A269694 A153280 A132683 * A077792 A153079 A173301

Adjacent sequences:  A059383 A059384 A059385 * A059387 A059388 A059389

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 28 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 18:42 EST 2018. Contains 317276 sequences. (Running on oeis4.)