login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059354 Primes p such that x^27 = 2 has no solution mod p, but x^9 = 2 has a solution mod p. 3
3943, 11287, 12853, 14149, 17659, 20143, 21061, 21277, 23059, 23599, 25759, 26407, 26731, 29863, 32833, 33751, 35803, 37747, 38287, 39367, 39799, 46441, 47737, 47791, 57781, 59887, 61291, 62047, 63127, 65557, 68311, 71443, 73063, 78301 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..107

MATHEMATICA

Select[Prime[Range[PrimePi[80000]]], !MemberQ[PowerMod[Range[#], 27, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 9, #], Mod[2, #]] &] (* Vincenzo Librandi, Sep 21 2013 *)

PROG

(MAGMA) [ p: p in PrimesUpTo(80000) | exists(t){x: x in ResidueClassRing(p) | x^9 eq 2} and forall(t){x : x in ResidueClassRing(p) | x^27 ne 2} ]; // Klaus Brockhaus, Dec 05 2008

CROSSREFS

Cf. A000040, A049596, A059262, A070185.

Sequence in context: A162859 A115929 A070185 * A059666 A230707 A230617

Adjacent sequences:  A059351 A059352 A059353 * A059355 A059356 A059357

KEYWORD

nonn

AUTHOR

Klaus Brockhaus, Jan 27 2001

EXTENSIONS

a(25)-a(34) from Klaus Brockhaus, Dec 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 04:53 EST 2020. Contains 331104 sequences. (Running on oeis4.)