This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059341 Triangle giving numerators of coefficients of Euler polynomials, highest powers first. 2
 1, 1, -1, 1, -1, 0, 1, -3, 0, 1, 1, -2, 0, 1, 0, 1, -5, 0, 5, 0, -1, 1, -3, 0, 5, 0, -3, 0, 1, -7, 0, 35, 0, -21, 0, 17, 1, -4, 0, 14, 0, -28, 0, 17, 0, 1, -9, 0, 21, 0, -63, 0, 153, 0, -31, 1, -5, 0, 30, 0, -126, 0, 255, 0, -155, 0, 1, -11, 0, 165, 0, -231, 0, 2805, 0, -1705, 0, 691, 1, -6, 0, 55, 0, -396, 0, 1683, 0, -3410, 0, 2073, 0, 1, -13 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809. L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14b]. LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. EXAMPLE 1; x-1/2; x^2-x; x^3-3*x^2/2+1/4; ... MAPLE for n from 0 to 30 do for k from n to 0 by -1 do printf(`%d, `, numer(coeff(euler(n, x), x, k))) od:od: MATHEMATICA Numerator[Table[Reverse[CoefficientList[Series[EulerE[n, x], {x, 0, 20}], x]], {n, 0, 10}]]//Flatten (* G. C. Greubel, Jan 07 2017 *) CROSSREFS Cf. A059342. See also A004172, A004173, A004174, A004175, A011934, A020523, A020524, A020525, A020526, A020547, A020548, A058940. Sequence in context: A181872 A239264 A294289 * A249442 A131802 A069023 Adjacent sequences:  A059338 A059339 A059340 * A059342 A059343 A059344 KEYWORD sign,tabf,frac,easy,changed AUTHOR N. J. A. Sloane, Jan 27 2001 EXTENSIONS More terms from James A. Sellers, Jan 29 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 10:06 EDT 2018. Contains 304411 sequences. (Running on oeis4.)