login
For 0<=A, 0<=B, n is an A-almost prime; m is a B-almost prime, k = n+m, k is a C-almost prime; a(n) = smallest number m such that A+B=C.
8

%I #6 Sep 18 2022 00:43:37

%S 2,1,3,23,5,2,2,73,1,2,3,52,2,1,3,227,5,14,2,44,1,5,2,232,1,2,1,4,5,

%T 66,2,1669,1,1,7,92,2,1,3,344,4,6,3,1,11,10,2,976,3,22,9,2,2,10,11,

%U 328,1,5,3,4,9,13,9,3581,3,6,2,4,7,10,3,952,8,2,1,4,4,3,3,944,15

%N For 0<=A, 0<=B, n is an A-almost prime; m is a B-almost prime, k = n+m, k is a C-almost prime; a(n) = smallest number m such that A+B=C.

%C a(n) is the least m such that Omega(n) + Omega(m) = Omega(n + m) where Omega(n) is the number of primes dividing n counted with multiplicity. - _Sean A. Irvine_, Sep 17 2022

%H Sean A. Irvine, <a href="/A059333/b059333.txt">Table of n, a(n) for n = 1..10000</a>

%e E.g. [ n=2 (A=1), m=1 (B=0), k=n+m=3 (C=A+B=1), so a(2)=m=1 ]; [ n=4 (A=2), m=23 (B=1), k=n+m=27 (C=A+B=3), so a(4)=m=23 ]

%K easy,nonn

%O 1,1

%A _Naohiro Nomoto_, Jan 26 2001