login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059305 Pi(Mersenne(n)): index of n-th Mersenne prime. 14
2, 4, 11, 31, 1028, 12251, 43390, 105097565, 55890484045084135 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Similar to A016027, but gives the number of the n-th Mersenne prime (rather than the number of the prime exponent).

A subsequence of A007053 and A086690.

LINKS

Table of n, a(n) for n=1..9.

Andrew R. Booker, The Nth Prime Page

C. K. Caldwell, Mersenne Primes

M. Deleglise and J. Rivat, Computing pi(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method, Math. Comp., 65 (1996), 235-245.

Xavier Gourdon and Pascal Sebah, Counting primes

Tomás Oliveira e Silva, Tables of values of pi(x) and of pi2(x)

FORMULA

a(n) = A000720(A000668(n))

a(n) = A007053(A000043(n))

A000668(n) = A000040(a(n)). - Omar E. Pol, Jun 29 2012

EXAMPLE

Element 2 = 4 because Mersenne2 = (2^3)-1 = 7; 7 is the 4th prime.

MATHEMATICA

Array[PrimePi[2^MersennePrimeExponent[#] - 1] &, 8] (* Michael De Vlieger, Apr 21 2019 *)

PROG

(PARI) LL(e) = if(e==2, return(1)); my(n, h); n = 2^e-1; h = Mod(2, n); for (k=1, e-2, h=2*h*h-1); return(0==h) \\ after Joerg Arndt in A000043

forprime(p=1, , if(LL(p), print1(primepi(2^p-1), ", "))) \\ Felix Fröhlich, Apr 19 2019

CROSSREFS

Cf. A000043 Mersenne exponents, A000668 Mersenne primes, A016027 Pi(mersenne exponents), A001348 Mersenne numbers.

Sequence in context: A123421 A123430 A086690 * A191586 A120848 A320567

Adjacent sequences:  A059302 A059303 A059304 * A059306 A059307 A059308

KEYWORD

nonn,hard,more

AUTHOR

Reto Keiser (rkeiser(AT)ee.ethz.ch), Jan 25 2001

EXTENSIONS

Revised by Max Alekseyev, Jul 20 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 12:30 EST 2019. Contains 329895 sequences. (Running on oeis4.)