login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059178 Engel expansion of 2^(1/3) = 1.25992. 1
1, 4, 26, 32, 58, 1361, 4767, 22303, 134563, 188609, 282816, 979804, 1272032, 1330628, 3719474, 5039143, 12531368, 435451235, 5391276884, 6140156718, 24140682996, 30267765913, 56443830660, 176797839116, 645251112512 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Cf. A006784 for definition of Engel expansion.

REFERENCES

F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.

P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.

Index entries for sequences related to Engel expansions

MATHEMATICA

EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];

EngelExp[N[2^(1/3), 7!], 10] (* modified by G. C. Greubel, Dec 26 2016 *)

CROSSREFS

Cf. A002580.

Sequence in context: A086909 A046963 A022386 * A056193 A196672 A306611

Adjacent sequences:  A059175 A059176 A059177 * A059179 A059180 A059181

KEYWORD

nonn,easy,nice

AUTHOR

Mitch Harris

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 21:32 EDT 2019. Contains 328133 sequences. (Running on oeis4.)